3,336 research outputs found

    The Computational Power of Beeps

    Full text link
    In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. We then show the bound tight with a matching upper bound. Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state optimality to gain efficiency. We then turn our attention to more general classes of problems by proving that once you have enough states to solve leader election with a given error bound, you have (within constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with a constant number of unary input tapes: allowing you to solve a large and expressive set of problems. These results identify a key simplicity threshold beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International Symposium on Distributed Computing (DISC 2015

    Origin of the butterfly magnetoresistance in a Dirac nodal-line system

    Full text link
    We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level εF\varepsilon_F at symmorphic and non-symmorphic positions, respectively. We find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe displays low residual resistivities, pronounced magnetoresistivity, high carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity (AMR), although its DNL is not protected against gap opening. As in Cd3_3As2_2, its transport lifetime is found to be 102^2 to 103^3 times larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays conventional transport properties. Our evaluation indicates that both compounds most likely are topologically trivial. Nearly angle-independent effective masses with strong angle dependent quantum lifetimes lead to the butterfly AMR in ZrSiSe

    Electron Spin Resonance of the ferromagnetic Kondo lattice CeRuPO

    Full text link
    The spin dynamics of the ferromagnetic Kondo lattice CeRuPO is investigated by Electron Spin Resonance (ESR) at microwave frequencies of 1, 9.4, and 34~GHz. The measured resonance can be ascribed to a rarely observed bulk Ce3+ resonance in a metallic Ce compound and can be followed below the ferromagnetic transition temperature Tc=14 K. At T>Tc the interplay between the RKKY-exchange interaction and the crystal electric field anisotropy determines the ESR parameters. Near Tc the spin relaxation rate is influenced by the critical fluctuations of the order parameter.Comment: This is an article accepted for publication in Journal of Physics: Condensed Matte

    Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2

    Full text link
    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighbouring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP2 and MoP2, that are type-II Weyl semimetals with robust Weyl points. We present transport and angle resolved photoemission spectroscopy measurements, and first principles calculations. Our single crystals of WP2 display an extremely low residual low-temperature resistivity of 3 nohm-cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. These properties are likely a consequence of the novel Weyl fermions expressed in this compound. We observe a large suppression of charge carrier backscattering in WP2 from transport measurements.Comment: Appeared in Nature Communication

    ESCIMO.spread (v2) : parameterization of a spreadsheet-based energy balance snow model for inside-canopy conditions

    Get PDF
    This article describes the extension of the ESCIMO.spread spreadsheet-based point energy balance snow model by (i) an advanced approach for precipitation phase detection, (ii) a method for cold content and liquid water storage consideration and (iii) a canopy sub-model that allows the quantification of canopy effects on the meteorological conditions inside the forest as well as the simulation of snow accumulation and ablation inside a forest stand. To provide the data for model application and evaluation, innovative low-cost snow monitoring systems (SnoMoS) have been utilized that allow the collection of important meteorological and snow information inside and outside the canopy. The model performance with respect to both, the modification of meteorological conditions as well as the subsequent calculation of the snow cover evolution, are evaluated using inside- and outside-canopy observations of meteorological variables and snow cover evolution as provided by a pair of SnoMoS for a site in the Black Forest mountain range (southwestern Germany). The validation results for the simulated snow water equivalent with Nash–Sutcliffe model efficiency values of 0.81 and 0.71 and root mean square errors of 8.26 and 18.07 mm indicate a good overall model performance inside and outside the forest canopy, respectively. The newly developed version of the model referred to as ESCIMO.spread (v2) is provided free of charge together with 1 year of sample data including the meteorological data and snow observations used in this study

    MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    Full text link
    We present MUSE integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z=0.0206z=0.0206, D90D\simeq 90 Mpc) and best-studied tidal disruption events (TDE), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to 10\gtrsim 10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O III] λ\lambda5007, [N II] λ\lambda6584, and Hα\alpha emission lines. The total off nuclear [O III] λ\lambda5007 luminosity is luminosity is 4.7×10394.7\times 10^{39} erg s1^{-1} and the ionized H mass is 104(500/ne)M\rm \sim 10^4(500/n_e)\,M_{\odot}. Based on the BPT diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization "cones" around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black-hole binaries.Comment: Accepted for publication in ApJ

    Magnetic structure in a U(Ru<sub>0.92</sub>Rh<sub>0.08</sub>)<sub>2</sub>Si<sub>2</sub> single crystal studied by neutron diffraction in static magnetic fields up to 24 T

    Get PDF
    We report the high-field induced magnetic phase in single crystal of U(Ru0.92Rh0.08)2Si2. Our neutron study combined with high-field magnetization, shows that the magnetic phase above the first metamagnetic transition at Hc1 = 21.6 T has an uncompensated commensurate antiferromagnetic structure with propagation vector Q2 = ( 2/3 0 0) possessing two single-Q domains. U moments of 1.45 (9) muB directed along the c axis are arranged in an up-up-down sequence propagating along the a axis, in agreement with bulk measurements. The U magnetic form factor at high fields is consistent with both the U3+ and U4+ type. The low field short-range order that emerges from the pure URu2Si2 due to Rh-doping is initially strengthened by the field but disappears in the field-induced phase. The tetragonal symmetry is preserved across the transition but the a axis lattice parameter increases already at low fields. Our results are in agreement with itinerant electron model with 5f states forming bands pinned in the vicinity of the Fermi surface that is significantly reconstructed by the applied magnetic field.Comment: 5 pages, 4 figures, accepted as Rapid Communication, Physical Review B (2017

    A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics

    Get PDF
    The dynamics of a collection of resonant atoms embedded inside an inhomogeneous nondispersive and lossless dielectric is described with a dipole Hamiltonian that is based on a canonical quantization theory. The dielectric is described macroscopically by a position-dependent dielectric function and the atoms as microscopic harmonic oscillators. We identify and discuss the role of several types of Green tensors that describe the spatio-temporal propagation of field operators. After integrating out the atomic degrees of freedom, a multiple-scattering formalism emerges in which an exact Lippmann-Schwinger equation for the electric field operator plays a central role. The equation describes atoms as point sources and point scatterers for light. First, single-atom properties are calculated such as position-dependent spontaneous-emission rates as well as differential cross sections for elastic scattering and for resonance fluorescence. Secondly, multi-atom processes are studied. It is shown that the medium modifies both the resonant and the static parts of the dipole-dipole interactions. These interatomic interactions may cause the atoms to scatter and emit light cooperatively. Unlike in free space, differences in position-dependent emission rates and radiative line shifts influence cooperative decay in the dielectric. As a generic example, it is shown that near a partially reflecting plane there is a sharp transition from two-atom superradiance to single-atom emission as the atomic positions are varied.Comment: 18 pages, 4 figures, to appear in Physical Review

    Entwicklung bei Traktormotoren in den letzten 20 Jahren

    Get PDF
    Seit Ende der 1990er-Jahre gilt die EU-Abgasgesetzgebung auch für Nonroad-Fahrzeuge und somit für landwirtschaftliche Traktoren. Mit der schrittweisen Einführung der EU-Abgasstufen I bis IV mussten die Emissionen der dieselmotorischen Hauptschadstoffe Partikelmasse und Stickoxide in den mittleren und oberen Leistungsklassen bis heute um jeweils rund 95 % vermindert werden. Möglich war dies nur dank intensiver Weiterentwicklung der Motor- und Abgastechnologien. HAFL und KIT zeigen die Entwicklung sowie einige dahinterstehende technische Zusammenhänge am Beispiel eines klassischen Traktor-Dieselmotors auf
    corecore